
CodeMetropolis – a Minecraft based collaboration
tool for developers

Gergő Balogh and Árpád Beszédes

Department of Software Engineering
University of Szeged

Hungary
{geryxyz, beszedes}@inf.u-szeged.hu

Abstract—Data visualisation with high expressive power plays
an important role in code comprehension. Recent visualization
tools try to fulfill the expectations of the users and use various
analogies. For example, in an architectural metaphor, each class
is represented by a building. Buildings are grouped into districts
according to the structure of the namespaces. We think that
these unique ways of code representation have great potential,
but in our opinion they use very simple graphical techniques
(shapes, figures, low resolution) to visualize the structure of
the source code. On the other hand, computer games use
high quality graphic and have high expressive power. A good
example is Minecraft, a popular role playing game that supports
both high definition, photo-realistic textures and long range
3D scene displaying. Additionally, it provides great extensibility
and interactivity for third party software. In this paper, we
introduce our mission to create a virtual world of source code
in which developers and other stakeholders could explore and
evaluate their project collaboratively in a virtual Minecraft
world. Code properties are represented by graphical primitives
offered by the game engine, and various interactivity features are
planned. Besides challenges of the implementation there are some
fundamental research issues considering the selection of a set of
visual element and mapping to source code properties. These
elements have to be compatible not only with the visualisation
and with the data model but also with the thinking of developers.

Index Terms—Source code visualization, game engine,
Minecraft, source code metrics.

I. INTRODUCTION

The importance of visualisation techniques is undeniable
in all field of science, and also in various software engi-
neering activities including comprehension and collaborative
exploration. Diagrams, charts and other graphical elements are
often used to present quantitative and qualitative properties and
their relations. These tools use simple and abstract graphical
primitives which could not be found in real world like straight
lines, points and circles. They are able to express some
attributes of the software successfully but are less useful
to present more complex, many dimensional contexts. There
are several visualisation tools which use real life metaphors
like skyscrapers to address this problem. On the other hand,
computer games use high quality graphic and good expressive
power. A good example is Minecraft, a popular role play-
ing game that supports both high definition, photo-realistic
textures and long range 3D scene displaying. Additionally, it

provides great extensibility and interactivity for third party
software.

Another motivating fact is that software developers use
various collaborative tools and techniques from e-mails trough
version controlling to code review tools, and most of these
use the previously mentioned simpler visualisation techniques.
These tools offer important but complex functionalities so
they often require continuous concentration from the users.
To improve the work flow, further collaboration tools are often
needed that provide rich user experience and hence increase
user productivity.

Our long term goal with the presented research is to join
the techniques of data visualisation [Maletic2002], graphical
game engines and collaborative tools. Our tool CodeMetropo-
lis is a Minecraft based visualisation tool. Figure 1 shows an
example of our current visualisation possibilities in it. Our
tools use a popular game engine Minecraft to visualize source
code, and provide additional functionality using which users
will be able to collaborate with each other via a multi-player
game sever.

To our knowledge, game engines have not yet been used
for the purposes of software data visualisation and user col-
laboration.

II. RELATED WORKS

People are different and use different mental processes
to comprehend the world. Some of them need numbers,
others use abstract formulas, but most of us like to see the
information visualised as colours, shapes, and figures. A lot
of data visualization techniques and tools were designed and
implemented in software engineering research and practice.
It exceeds the purpose of this article to exhaustedly evaluate
these techniques and tools, but in our opinion traditional
visualisation tools like Rigi [Wong1998], sv3D [Marcus2005]
and SHriMP Views [Storey2002] are built on innovative ideas
but often it is difficult to interact with them, and they usually
fall behind in terms of graphics from today’s computer games,
for instance.

The recent growth of web based applications and the popu-
larity of mobile devices made it possible for the collaborative
tools to reach the general public. Besides general applications
like Google Drive and Facebook there are several services with



Figure 1. JUnit project visualized by CodeMetropolis

more specific purposes to aid software engineering processes
like SourceForge and Github. There already exist a number
of sophisticated software tools that are able to visualize the
huge amount of data collected by these tools, for instance,
Gource [gource-webpage], Logstalgia [logstalgia] and Star-
Gate [Ma2008]. However, most of these tools use abstract
shapes and simple graphical primitives like charts and vertex
graphs.

The most closely related approaches to our tool are
CodeCity [Wettel2008a] and EvoSpace [Lalanne2009] which
use the analogy of skyscrapers in a city. CodeCity simplifies
the design of the buildings to a box with height, width, and
colour. The quantitative properties of the source code – called
metrics – are represented with these attributes. In particular,
each building represents a class where height shows the
number of methods, width shows the number of attributes, and
colour shows the type of the class. The buildings are grouped
into districts as classes are tied together into namespaces.
The diagram itself resembles to a 3D barchart with grouping.
EvoSpace uses this analogy in a more sophisticated way. The
buildings have two states: closed – when the user can see
the large scale properties like width and height, and open –
when we are able to examine the low, small scale structure of
the classes, see the developers and their connections. It also
provides visual entity tagging and quick navigation via the
connections and on a small overview map.

Despite their appealing appearance and great potential in
general, these tools still use relatively low fidelity graphics
compared to today’s most advanced computer games. Further-
more, little collaborative features are provided that enable a
simultaneous work flow of different project members. In this
paper we introduce our approach for visualising source code
using the city metaphor as well, but employing a sophisticated
game engine and advanced collaborative features.

A. About Minecraft

Minecraft [minecraft-website] is a popular role-playing
game. The game itself does not have a strict game-flow. Its
main focus is creativity and the joy of creation. Only the
available computation power and the storage capacity can limit
the fantasy of the player.

The main concept in the game is the block. It is a box with
about one meter long sides, compared to the player. Almost
everything is built up of it, so the whole World is a 3D matrix
filled with blocks of various types. The player can collect the
blocks, create (craft) new ones and interact with them. The
game is similar to a virtual Lego with infinite playground and
an infinite number of building blocks.

Due to its extensibility, its simple yet sophisticated func-
tions, and its rich palette of possibilities Minecraft can display
complex structures with a low overhead.

Figure 2. Scenarios and data flow

III. VISUALIZATION AND COLLABORATION IN VIRTUAL
WORLD

As mentioned, motivation of project team members plays
a key role when data visualisation and collaborative tools



and techniques are to be used. A possible way to increase
motivation is by providing rich user experience of high quality
graphics provided by game engines like Minecraft. Many
games support a multiplayer mode, which is in essence a
collaboration platform between different users. These facts and
the highly advanced extendibility of Minecraft made it possible
to use it as a collaboration and visualisation tool for software
developers.

Our main concept and some planned usage scenarios are
shown in Figure 2. Data sources are listed on the upper part
of the figure, while users and scenarios are located on the
bottom part of it. They are connected via our central converter
and management tool CodeMetropolis and backed up by a
multiplayer sever of Minecraft. Users are able to interact with
various parts of the world and with each other as well, and
these actions can be propagated to the original data sources
like version control servers and bug databases. In this manner
the game could be used to inspect source code attributes during
development, follow the evolution of the system by mangers or
find and mark bugs during code reviews, for instance. Some of
these features are already implemented in our prototype tool,
while the others are planned as future work.

IV. DATA VISUALISATION IN CODEMETROPOLIS

CodeMetropolis is a command line tool written in
C# and uses the Substrate [substrate-website] library for
.NET Framework. It takes the output graph of Columbus
Tool [Columbus] and creates a Minecraft world from it.
Columbus Tools area collection of various programs, which
are able to analyse and measure static artifacts related to
the source code. The output is given with a unique binary
format, but the related tools and the format itself are under
development and not yet published. For these reasons we could
not give a detailed specification of the output format. The
world uses the metropolis metaphor, which means that the
source code metrics are represented with the various properties
of the different kinds of buildings. Figure 1 shows an example
world.

The representation has two levels. The data level contains
the various object and their data, which are directly related to
the measured artifacts, for example classes. On the other hand,
metaphor level is build up from the visual representations of
these, for example buildings and floors. On the data level,
each entity has its own property set – for example metrics,
which are displayed on the metaphor level. The buildings in
our metropolis are parts of this metaphor, and they have a
couple of attributes which control visual appearance. The items
which are highlighted on the graphic in Figure 3 represent
various source code entities, while the properties are mapped
to the attributes in order to visualise the data. In this concrete
case you see a couple of namespaces visualised as stone plates.
They are contain two classes represented by buildings, finally
these have several methods, which size and complexity are
mapped to the width and height of the floors.

Figure 4 shows a concrete class from JUnit represented
with a single building on a plate. In this example source

Figure 3. Items of the metaphor level

code metrics complexity (McCC) and size (lLOC) are used as
attributes. The metrics have been normalized to scale between
a minimum (4 blocks) and a maximum (25 blocks) value.

Figure 4. Example class visualization

V. BENEFITS AND FURTHER POSSIBILITIES

The usefulness of the metaphor of CodeMetropolis depends
on various factors including the experience and personal values
of the users. For people who naturally use similar metaphors
to understand the world this could be a straightforward way
of visualisation, while for many others the approach would be
merely an interesting but generally an experimental idea.

With these considerations kept in mind, a couple of further
plans and ideas will be explained.

A. Metaphor related ideas

1) Understanding inter-metrical relations: To understand
the relation and connection among the various metrics, the
global context has to be analysed.

To address this problem, CodeMetropolis will use various
sophisticated metaphors. For example, a floor represents a
method. Its width and length are mapped to its complexity
and its height indicates its size. Furthermore, the number
of windows and doors visualise the count of its parameters.
There are torches on the wall if the method is tested. Even
if the developers do not know the formal definition of these



metrics, they are able to see the consequences of their actions
while writing the code. Sooner or later, they will perceive the
represented source code as a whole.

2) Extending the palette of the entities and attributes: The
future version of our converter will use an extended palette
of the blocks supported in Minecraft. For example, flowers
to decorate beautiful code and zombies (hostile creatures) to
indicate bad practices.

B. Help system
1) Navigation support: We plan to implement a mini-

map and a teleportation system. The related classes will be
connected with railways allowing the users to navigate and
see the connections.

2) In-game explanations: Posts, wall signs and books will
be used to explain the meaning of the various attributes and
to show the source code of the corresponding element.

C. Collaboration and code management
1) Inter-user communication: Besides the traditional forms

of communication like textual chat and audio connection
users will be able to use in-game items and techniques to
interact with each other. For example, they could leave signs
as notification or if they are walking together in the virtual
world they could simply point to or go to a specific part of
the “code”.

2) Round-trip source code management: The changes be-
tween the source code and the metropolis will be propagated
to each other.

3) Visualize source code history: The functionality of open-
source multi-player servers will be extended to be able to
visualise source code history. For example, computer con-
trolled players (npc-s or bots) will build the metropolis as
the developers commit their changes into the version control
system.

4) Annotating entities: When developers are inspecting the
source code, they could leave comments to mark its parts.
A future version of our conversion tool will support code
annotation. When developers put a wall or post a sign on some
entities (floors, buildings) the text on it will be inserted into the
source code as a comment. Furthermore, in the multi-player
mode developers can see and interact with each other, so some
parts of a code review meeting can be held in the Minecraft
world for instance.

5) Present code history: There are several open-source
Minecraft servers which support extendibility. We plan to
use these servers to visualize the code history gathered from
the version control system. With the use of historical data,
representations can be generated for each revision and then
several computer controlled players could be used to literally
build these parts of the metropolis. Each such player could
represent a developer and will build the parts of the buildings
that they coded. For example, if a developer inserts a new
method into a class, the player will go to the corresponding
building and build a new floor representing the new method.
Project managers and other developers can join the server and
see the evolution of the system.

VI. CONCLUSION

Classical visualisation techniques are proved to be useful
in many situations but they fail to maintain the motivation of
developers in some circumstances. The provided metropolis
metaphor, combined with high quality graphical techniques
and advanced collaborative features of today’s computer
games, has enough expressive power to represent the complex
items of the source code and hopefully maintain motivation.
In our opinion, software development could be made more
interesting and motivating if we unite the solid engineering
practice and technologies from the industrial segment with the
endless fantasy and joy of creation found in games. As one of
our developers said: “It makes software metrics such fun that
you want to do it.”

We created a proof of concept implementation for this
metaphor. The current prototype implements various basic
functionalities, but the more advanced collaborative features
overviewed above will be implemented in the future. Even-
tually, we want to offer a really useful tool in the future not
only for enthusiastic developers who are spare time gamers
but also for fulltime developers and managers in the software
industry.

The current version of CodeMetropolis can be downloaded
from the following url: http://www.inf.u-szeged.hu/∼geryxyz/
code-metropolis. The published package contains the executa-
bles and two sample projects: JUnit and HelloCraft, together
with sample inputs and outputs.

http://www.inf.u-szeged.hu/~geryxyz/code-metropolis
http://www.inf.u-szeged.hu/~geryxyz/code-metropolis

	Introduction
	Related works
	About Minecraft

	Visualization and collaboration in virtual world
	Data visualisation in CodeMetropolis
	Benefits and further possibilities
	Metaphor related ideas
	Understanding inter-metrical relations
	Extending the palette of the entities and attributes

	Help system
	Navigation support
	In-game explanations

	Collaboration and code management
	Inter-user communication
	Round-trip source code management
	Visualize source code history
	Annotating entities
	Present code history


	Conclusion

