CodeMetropolis — code visualisation in MineCraft

Gerg6 Balogh and Arpad Beszédes

Department of Software Engineering
University of Szeged
Hungary
{geryxyz, beszedes} @inf.u-szeged.hu

Abstract—Data visualisation with high expressive power plays
an important role in code comprehension. Recent visualization
tools try to fulfil the expectations of the users and use various
analogies. For example, in an architectural metaphor, each class
is represented by a building. Buildings are grouped into districts
according to the structure of the namespaces. We think that these
unique ways of code representation have great potential, but in
our opinion they use very simple graphical techniques (shapes,
figures, low resolution) to visualize the structure of the source
code.

On the other hand, computer games use high quality graphic
and good expressive power. A good example is Minecraft, a
popular role playing game with great extensibility and inter-
activity from another (third party) software. It supports both
high definition, photo-realistic textures and long range 3D scene
displaying.

Our main contribution is to connect data visualisation with
high end-user graphics capabilities. To achieve this, a conversion
tool was implemented. It processes the basic source code metrics
as input and generates a Minecraft world with buildings, districts,
and gardens. The tool is in the prototype state, but it can be used
to investigate the possibilities of this kind of data visualisation.

I. INTRODUCTION

Software systems could reach virtually infinite complexity
by their nature. In theory, there is no limit of control flow
embedding, or the number of methods, attributes, and other
source code elements. In practice, these are bound to the
computational power, time and storage capacities. To compre-
hend these systems, developers have to construct a detailed
mental image. These images are gradually built during the
implementation of the system.

Often, these mental images are realised as physical graphics
with the aid of data visualisation software. For example,
different kinds of charts are used that emphasize the difference
among various measurable quantities of the source code, or
UML diagrams which are able to visualise complex relations
and connections among various entities in the system.

A. Classical visualisation

People are different, each of them having their own point
of views. They use various “tools” to comprehend the world.
Some of them need numbers, others use abstract formulas,
but most of them need to see to visualize the information as
colours, shapes, and figures. To fulfil the expectations of peo-
ple, a lot of data visualization techniques and tools were de-
signed and implemented. It exceeds the purpose of this article
to exhaustedly evaluate these techniques and tools, but in our

opinion traditional visualisation tools like Rigi [Wong1998],
sv3D [Marcus2005] and SHriMP Views [Storey2002] are
built on innovative ideas but often it is difficult to interact
with them, and they usually fall behind in terms of graphics
from today’s computer games, for instance.

B. About CodeCity and EvoSpace

The most closely related approaches to our tool are
CodeCity [Wettel2008a] and EvoSpace [Lalanne2009] which
use the analogy of skyscrapers in a city. CodeCity simplifies
the design of the buildings to a box with height, width, and
colour. The quantitative properties of the source code — called
metrics — are represented with these attributes. In particular,
each building represents a class where height shows the
number of methods, width shows the number of attributes, and
color shows the type of the class. The buildings are grouped
into districts as classes are tied together into namespaces.
The diagram itself resembles to a 3D barchart with grouping.
EvoSpace uses this analogy in a more sophisticated way. The
buildings have two states: closed — when the user can see
the large scale properties like width and height, and open —
when we are able to examine the low, small scale structure of
the classes, see the developers and their connections. It also
provides visual entity tagging and quick navigation via the
connections and on a small overview map.

Despite their appealing appearance and great potential in
general, these tools still use relatively low fidelity graphics
compared to today’s most advanced computer games. In this
paper we introduce our approach for visualising source code
using the same metaphor but employing a sophisticated game
engine called Minecraft.

C. About Minecraft

Minecraft [minecraft-website] is a popular role-playing
game. It is written in Java language and uses OpenGL graph-
ical engine to display the scenes. Both of these technologies
are widely supported on major platforms. It is distributed both
as free and as commercial software with support. There are
several binary formats used to describe the game scene — called
world — which are either open standards or free formats.

The game itself does not have a strict game-flow. Its main
focus is creativity and the joy of creation. Only the available
computation power and the storage capacity can limit the
fantasy of the player.

S

Figure 1. JUnit project visualized by CodeMetropolis

The main concept in the game is the block. It is a box with
about one meter long sides, compared to the player. Almost
everything is built up of it, so the whole World is a 3D matrix
filled with blocks of various types. The player can collect the
blocks, create (craft) new ones and interact with them. The
game is similar to a virtual Lego with infinite playground and
an infinite number of building blocks.

The player has its own backpack which can be filled with
blocks and tools. The tools are used to accomplish or speed up
various tasks like mining. Every tool has its own properties.
There are some common materials like dirt, stone and sand,
and some special blocks have more sophisticated purposes, for
example cheast, which can store items, and various electronic
(red wire) devices like pressure sensitive plates, buttons, and
switches.

Due to its extensibility, its simple yet sophisticated func-
tions, and its rich palette of possibilities Minecraft can display
complex structures with a low overhead.

II. DATA VISUALISATION IN CODEMETROPOLIS

CodeMetropolis is a command line tool written in C#. It
takes the output graph of Columbus Tool [Columbus] and
creates a Minecraft world from it. The output is given with
a unique binary format, but the related tools and the format
itself are under development and not yet published. For these
reasons we could not give a detailed specification of the output
format. The world uses the metropolis metaphor, which means
that the source code metrics are represented with the various
properties of the different kinds of buildings. Figure 1 shows
an example world.

The representation has two main levels. On the data level,
each entity has its own property set — for example metrics.
In the current version, these are loaded from the previously

mentioned graph, but we plan to support other data sources, for
example XML files. These data are displayed on the metaphor
level. All buildings in the metropolis belong to this. The
buildings and the world itself has a couple of attributes which
control visual appearance. The properties are mapped to the
attributes in order to visualise the data. However, in the current
version this mapping is hardcoded, the further versions will
support customisation with a sophisticated mapping language.

A. Considered metrics and properties

As mentioned before, source code metrics were used to
express the various properties of the system. Our source code
analysis toolset, Columbus, produces a number of different
source code metrics for various languages. Some of the most
commonly used metrics are the following:

NOI Number of outgoing invocations, NII Number of
incoming invocations, LOC Lines of code, TLLOC Total
logical lines of code, LLOC Logical lines of code, NUMPAR
Number of parameters, NL Nesting level, McCC McCabe’s
cyclomatic complexity, NOS Number of statements.

These common metrics were considered during the exper-
iments, however the current version of CodeMetropolis does
not use all of them (we detail the used ones below).

To create a visualization with sufficient expressive power,
the structure of the system has to be displayed as well. The
graph input contains this information, expressed with the edges
of the graph. From several types of edges only the containment
relation was used.

Figure 2 shows a simple input graph. It represents a small
Java program which only consists of a couple of source files.
The source code and the graph of this example were included
in the sample inputs.

Attributes:

control.|Control. Initialize()Z - Method

HelloCraft.main([Ljavaglang.String;)V - Method nl, - Name
control.|Conttol - Interface — Width
HelloCraft - Class
HelloCraft. Hello@raft()V - Method._ - Length
<root_package> - Package .
— Height

control %kage

control:MyQuickSortfswap([I!1)V - Method

control. MP(ujgkSort -
control. My: mckSDr‘t—-;iartﬂmn([lll)l Method

control. MyQulckSon &mlckSorté[ll WV - Method
uickSort. MygQuickSort()V - Method
control. MmeckSort maln([!]ava lang.String;)V - Method

Figure 2. Simple graph input

B. Data mapping

The current version of the converter uses the following
entities and attributes to visualise the source code. These items
are highlighted on Figure 3.

Figure 4. Attributes of a floor

All of these entities have a minimal size, to let the player
walk in and are labelled with post or wall signs showing the
name of the represented source code item (Figure 5). Because
these sign could be seen only from short distance, we plan to
provide some location information via a mini-map of the city.

Namespace

Figure 3. Items of the metaphor level

« A Plate is able to group various type of entities including
other plates. It is used to display the namespace hierarchy
like a tree-map. In the generated world, it is displayed as a
solid rectangle of stone blocks. Its width and length were
adjusted automatically to fit to its contents. Attributes:

— Name

Figure 5. In-game labels

o Districts are similar to Plates. It is used to represent
individual classes. It is displayed as a plate of grass blocks

surrounded with fences. Attributes: Figure 6 shows a concrete class from JUnit represented with

a single building on a plate. The values of the mapped metrics
are shown as well, which are normalized. The values are scaled
o A Building is another compound entity. It consists only of petween a minimum (4 blocks) and a maximum (25 blocks)

floors which are placed on the top of each other ordered values. The source code of this class can be seen in Listing 1.

— Name

according to their width and length. The converter uses

this entity to group floors, however it has no meaning on public class InvokeMethod extends Statement {

private final FrameworkMethod fTestMethod;

the data level. Attributes: private Object fTarget;

B Name_ . . o public InvokeMethod (FrameworkMethod testMethod ,
« Floor (Figure 4) is a simple box of glass blocks with iron Object target) {

lattice and bottom. It represents a single method. Its width fTestMethod = testMethod;

and length are mapped to McCC and its height represents) fTarget = target:

the size of the method in the logical lines of the code.

@Override

public void evaluate () throws Throwable {
fTestMethod.invokeExplosively (fTarget);

}

Listing 1. Source of InvokeMethod class

Bl McCC = 1

=
pri el T
InvokeMethod(...)
S B LLOC=4
]

Figure 6. Example class visualization

C. Multilevel data visualisation

One of the problems of understanding complex systems
is the flow of information. In this case, the users have too
much low level information and they are unable to filter out
the irrelevant data. To overcome this problem, we introduced
multilevel data visualisation. With this technique, the users
have the opportunity to decide how much details they would
like to see.

In Minecraft, this is simply done by looking at the entities
from different distances. Since Minecraft allows one to fly in
a so called creative mode, the user can inspect the metropolis
from the bird’s eye view thus seeing the large scale size of the
classes and the namespaces. Then, one can walk on the streets
and compare the size and the complexity of the methods.
It is even possible to go inside the methods and — in the
future version — explore their inner structure represented with
furniture.

III. BENEFITS AND USE CASES

The usefulness of a tool like CodeMetropolis depends on
various factors including the experience and personal values
of the users. People who naturally use similar metaphors to
understand the world this could be a straightforward way of
visualisation, while for many others the approach would be
merely an interesting but generally an experimental idea.

With these considerations kept in mind, a couple of use
cases will be explained. There are two main applications of
the data visualisation tools — and CodeMetropolis. It can be
used on real life projects, or in classrooms, to help students
understand complex relations and concepts. In the use cases,
we were focusing on the first one, but the corresponding use
cases of the second one can be easily found.

A. Bad smells detection

Bad smells are the parts of the code which will probably
cause an error or are difficult to maintain. [Fowler1999]
Developers usually identify bad smells by reading the source
code.

With CodeMetropolis, developers are actually able to see
some of the smells. For example, if the logical lines of the
methods are mapped to the height of the floors — as in the
current version — a giant class can be easily found by searching
the tallest building of the metropolis. Then, by walking or
flying around this building the count and size of the methods
could be examined. If there are only a couple of them, these are
large methods that need to be split up. On the other hand, when
there are a lot of small methods, the class might be a so called
god or brain class which needs to move its functionalities into
another class, maybe a new one.

B. Inspect the structure of code

When new developers are assigned to an ongoing project
they have to understand the large scale structure of the system.
They usually browse via many directories and source files,
or in better cases they look at the different diagrams and
documentations of the system. But any case simply browsing
through a myriad of code and documents is tedious and
the developers’ motivation rapidly decreases. Furthermore,
documentations is often outdated or incomplete.

The worlds of CodeMetropolis are generated from the
source code, so they always reflect the current state of the
system. Developers can fly over the metropolis and see the
clusters of the classes and the namespaces.

C. Annotating entities

When developers are inspecting the source code, they often
leave comments to mark its parts.

The future version of our conversion tool will support code
annotation. When developers put a wall or post a sing on
some entities (floors, buildings), the text on it will be inserted
into the source code as a comment. Furthermore, in the multi-
player mode developers can see and interact with each other,
so some parts of a code review meeting can be held in the
Minecraft world.

D. Present code history

There are several open-source Minecraft servers which
support extendibility. We plan to use these servers to visualize
the code history gathered from the version controlling system.

With the use of historical data, representations can be
generated for each revision, then several computer controlled
players will be used to literally build these states of the
metropolis. Each player represents a developer and will build
the parts of the buildings that they coded. For example, if
a developer inserts a new method into a class, the player
will go to the corresponding building and build a new floor
representing the new method. Project managers and other
developers can join the server and see the evolution of the
system.

E. Identify untested code

Test coverage data will be integrated into a future version
of the converter. For example, torches and glowstones can be
used to illuminate the building representing the tested parts
of the code. The height of the fences around the classes can
represent the number of test cases associated with the given
class. The colour of these fences can be used to indicate the
result of the test case (pass, fail).

F. Understanding inter-metrical relations

Since source code can be complex having many different
properties and attributes and relations to other entities, clas-
sical visualisation techniques like graphs and charts cannot
represent so much information at once. However, to understand
the relation and connection among the various metrics, the
global context has to be analysed.

To address this problem, CodeMetropolis will use various
sophisticated metaphors. For example, a floor represents a
method. Its width and length are mapped to its complexity
and its height indicates its size. Furthermore, the number of
windows and doors visualise the count of its parameters. There
are torches on the wall if the method is tested and the fences
around it indicate the number of passed test cases. Even if the
developers do not know the formal definition of these metrics,
they are able to see the consequences of their actions while
writing the code. Sooner or later, they will assign informal
meanings to the different kinds of graphical elements in the
metropolis and they will perceive the represented source code
as a whole.

IV. CURRENT STATE

CodeMetropolis is in a prototype state, and we have a lot of
plans for various additional functionalities to be implemented.
However, with this paper we intend to publish current results
and further ideas as a proof of the implementability of the
concept.

This version was written in C# using the .Net framework. It
is a command line tool which takes the previously mentioned
graph as input and creates a Minecraft world from it. There
are a couple of open-source API-s for every major language
which support editing or creations over these worlds. Our
tool uses the Substrate [substrate-website] library for NET
Framework.

Currently, only the previously mentioned complexity and
size metrics are visualised with the entities listed in Sec-
tion II-B and only the namespaces, classes and methods are
represented. However, even with this limited toolset we were
able to visualise complex, real life systems and gain useful
insights into the systems. As an example, Figure 1 shows the
view of the JUnit [junit-website] metropolis.

A. User feedback

“It makes software metrics such fun that you want
to do it.” an user
We performed a number of interviews among our colleagues
that included university lecturers, students and developers

working on industrial code, altogether six users was asked.
We wanted to gain early feedback on the converter and the
visualisation technique in general. In this section, both the
negative and the positive impressions about CodeMetropolis
will be summarised.

The negative opinions are grouped into several topics. The
first of these concerns is the problem of great distances. The
metropolis of a large or medium scale project can be huge
and the players need a lot of time to navigate in it. We plan
to solve this problem by implementing a quick map and a
navigation system. These will be included in the multi-player
server enabling the players to see their location and quickly
teleport to other places.

Other opinions were concerned about the learning curves,
either about Minecraft or about the visualisation. In our
opinion, Minecraft has very simple control logic and in-game
physics, no cryptic keyboard short-cuts, or complex machinery.
It can be learned quickly and easily while playing or with the
use of sophisticated online resources [minecraftwiki-website]
covering every detail. Minecraft supports two special items
among others: cheats, which can store other items and book
them, and quill, which allows the players to take notes and
write books in the game. CodeMetropolis will also support
these to create in-game explanation notes for the items of the
metaphor level.

The last problem was the lack of simultaneous data visual-
isation. The users could identify only three attributes: width,
length, and height. This limited set is not enough to visualise
the complex items of the data level, but as explained above
we will be able to extend the tool with additional properties
easily.

The positive impressions are also grouped into categories.
The first of these is about the expressive power provided
by the metaphor and the in-game logic of Minecraft. The
second one is that the “work while you play” approach
can maintain or even increase the motivation of the users,
especially students. Finally, the users mentioned one of our
further plans, the round-trip source code management. For
example, if the players destroy a floor in the metropolis, the
corresponding method will be removed from the source code.

V. FUTURE WORKS

In this section, we will enumerate some of our further
plans. Since almost all of these were explained in depth in
the previous sections, here only a short list is given.

Extending the palette of the entities and attributes The
future version of our converter will use an extended palette
of the blocks supported in Minecraft. For example, flowers
to decorate beautiful code and zombies (hostile creatures) to
indicate bad practices.

Navigation support We plan to implement a mini-map and
a teleportation system. The related classes will be connected
with railways allowing the users to navigate and see the
connections.

Round-trip source code management The changes between
the source code and the metropolis will be propagated to each

other.

In-game explanations Post and wall sings and books will be
used to explain the meaning of the various attributes and to
show the source code of the corresponding element.
Visualize source code history The functionality of open-
source multi-player severs will be extended to visualize source
code history. For example, computer controlled players (npc-s
or bots) will build the metropolis as the developers commit
their changes into the version control system.

VI. CONCLUSION

In some cases, developers need to step away from the source
code and inspect the system from a different perspective. We
believe that CodeMetropolis will be able to maintain moti-
vation without sacrificing productivity thanks to its intuitive
and, for many people, already known graphical surface. The
provided metropolis metaphor has enough expressive power
to represent the complex items of the source code. Combined
with high quality graphical techniques provided by today’s
computer games, it is able to offer a rich graphical interface,
an easy to learn controlling, and a rich user experience. It
is probably easier to fit in classrooms than in a commercial
project. However, we will continue its development to inte-
grate the functionalities which are useful for developers, for
students, and for teachers.

APPENDIX A
DEMONSTRATION

The demonstration will be carried out live, which means
that a small example project written in Java will be visualised
from the source code to the metropolis in Minecraft. We will
go through the following steps:

1) The problem will be presented in a couple of slides to
warm up the audience.

2) A sample world will be generated by Minecraft to illus-
trate the possibilities of the game.

3) A small sample code will be introduced.

4) The example project will be converted to a Minecraft
world.

5) Every attribute mentioned in this paper will be explained
on the metropolis generated in the previous step.

6) The authors and the audience will explore together the
metropolis of JUnit.

APPENDIX B
EXECUTABLES AND SAMPLES

The current version of CodeMetropolis can be downloaded
from the following url: http://www.inf.u-szeged.hu/~geryxyz/
code-metropolis.html. The published package contains the
executables and two sample projects: JUnit and HelloCraft,
both of them were mentioned in this paper, together with
sample inputs and outputs.

The tool is distributed in two ways: in portable binaries
and in a setup package. It requires the 4.5 version of the
NET framework. After installing or copying the executables
into the desired location, the conversion can be started with

the CodeMetropolis.exe <input-file>.graph
command from the command-line prompt. It will prompt to
press the Enter-key when the conversation is finished. The
results will be produced in the CodeWorld directory under
the current directory. It will contain the generated Minecraft
world which needs to be copied to

<user—home>\AppData\Roaming\.minecraft\saves

under Microsoft Windows 7. Then the user will be able to
open it with Minecraft as a usual world. The tool was tested
with 1.5.2 version of Minecraft.

